Pro-inflammatory role of high-mobility group box-1 on brain mast cells via the RAGE/NF-κB pathway

高迁移率族蛋白 B1 通过 RAGE/NF-κB 通路对脑肥大细胞发挥促炎作用

阅读:5
作者:Qing-Qing Qian, Xiang Zhang, Yi-Wei Wang, Jia-Wen Xu, Hong-Quan Dong, Na-Na Li, Yan-Ning Qian, Bo Gui

Abstract

High-mobility group box-1 (HMGB-1) acts as a pro-inflammatory cytokine contributing to the occurrence of many central inflammatory and infectious disorders. Brain mast cells (MCs) are the first responders to peripheral inflammatory stimulation because of their rapid response to external stimuli coupled with their release of preformed and newly synthesized reactive chemicals. Little is known about the involvement of brain MCs in the pro-inflammatory effects of HMGB-1 on the central nervous system (CNS). Thus, we investigated the activation process of MCs by HMGB-1 and explored whether this process is involved in the pro-inflammatory effects of HMGB-1 on the CNS. In this study, we used P815 cells to study the activating role of HMGB-1 on MCs and to explore its potential mechanism in vitro. In an in vivo study, adult male Sprague-Dawley rats received i.c.v. injection of sterile saline or cromoglycate (stabilizer of MCs) 30 min prior to i.p. injection of HMGB-1. Increased levels of tumor necrosis factor and IL-1β were observed in the P815 cells, as well as in the rats' brains, after HMGB-1 treatment. Pretreatment with the receptor of advanced glycation endproducts (RAGE)-siRNA inhibited the HMGB-1-induced inflammatory process in the P815 cells. Activation of the RAGE/nuclear factor-κB (NF-κB) pathway was observed in both the P815 cells and rats' brains. In addition, HMGB-1 induced the accumulation of brain MCs in the hippocampal CA1 region, and the blood-brain barrier was disrupted. Pretreatment with cromoglycate, a stabilizer of MCs, mitigated these HMGB-1-induced pro-inflammatory processes in rats. These findings indicate that brain MCs are involved in the pro-inflammatory effect of HMGB-1 on the CNS, probably via activating the RAGE/NF-κB pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。