An intrinsic lipid-binding interface controls sphingosine kinase 1 function

内在脂质结合界面控制鞘氨醇激酶1的功能

阅读:6
作者:Michael J Pulkoski-Gross, Meredith L Jenkins, Jean-Philip Truman, Mohamed F Salama, Christopher J Clarke, John E Burke, Yusuf A Hannun, Lina M Obeid

Abstract

Sphingosine kinase 1 (SK1) is required for production of sphingosine-1-phosphate (S1P) and thereby regulates many cellular processes, including cellular growth, immune cell trafficking, and inflammation. To produce S1P, SK1 must access sphingosine directly from membranes. However, the molecular mechanisms underlying SK1's direct membrane interactions remain unclear. We used hydrogen/deuterium exchange MS to study interactions of SK1 with membrane vesicles. Using the CRISPR/Cas9 technique to generate HCT116 cells lacking SK1, we explored the effects of membrane interface disruption and the function of the SK1 interaction site. Disrupting the interface resulted in reduced membrane association and decreased cellular SK1 activity. Moreover, SK1-dependent signaling, including cell invasion and endocytosis, was abolished upon mutation of the membrane-binding interface. Of note, we identified a positively charged motif on SK1 that is responsible for electrostatic interactions with membranes. Furthermore, we demonstrated that SK1 uses a single contiguous interface, consisting of an electrostatic site and a hydrophobic site, to interact with membrane-associated anionic phospholipids. Altogether, these results define a composite domain in SK1 that regulates its intrinsic ability to bind membranes and indicate that this binding is critical for proper SK1 function. This work will allow for a new line of thinking for targeting SK1 in disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。