Fibronectin Containing Extra Domain A Induces Plaque Destabilization in the Innominate Artery of Aged Apolipoprotein E-Deficient Mice

含有额外结构域 A 的纤维连接蛋白诱导老年载脂蛋白 E 缺乏小鼠无名动脉斑块不稳定

阅读:7
作者:Prakash Doddapattar, Manish Jain, Nirav Dhanesha, Steven R Lentz, Anil K Chauhan

Approach and results

Plaque composition was determined in the innominate artery, a plaque instability site that is known to mimic several histological features of vulnerable human plaques. Female Apoe-/-, Fn-EDA-/-Apoe-/-, TLR4-/-Apoe-/-, and Fn-EDA-/-TLR4-/-Apoe-/- mice were fed a high-fat Western diet for 44 weeks. Fn-EDA-/-Apoe-/- mice exhibited reduced plaque size characterized by smaller necrotic cores, thick fibrous caps containing abundant vascular smooth muscle cells and collagen, reduced CD68/MMP9 (matrix metalloproteinase 9)-positive content, less accumulation of MMP-cleaved extracellular matrix aggrecan, and decreased vascular smooth muscle cell and macrophage apoptosis (P<0.05 versus Apoe-/- mice). Together these findings suggest that Fn-EDA induces plaque destabilization. Deletion of TLR4 reduced histological features of plaque instability in Apoe-/- mice but did not further reduce features of plaque destabilization in Fn-EDA-/-Apoe-/- mice, suggesting that TLR4 may contribute to Fn-EDA-induced plaque destabilization. Fn-EDA potentiated TLR4-dependent MMP9 expression in bone marrow-derived macrophages, suggesting that macrophage TLR4 may contribute to Fn-EDA-mediated plaque instability. Conclusions: Fn-EDA induces histological features of plaque instability in established lesions of aged Apoe-/- mice. The abundance of Fn-EDA in advanced atherosclerotic lesions may increase the risk of plaque destabilization.

Conclusions

Fn-EDA induces histological features of plaque instability in established lesions of aged Apoe-/- mice. The abundance of Fn-EDA in advanced atherosclerotic lesions may increase the risk of plaque destabilization.

Objective

Fibronectin containing extra domain A (Fn-EDA) is an endogenous ligand of TLR4 (toll-like receptor 4) and is abundant in the extracellular matrix of advanced atherosclerotic lesions in human and mice. Irrespective of sex, deletion of Fn-EDA reduces early atherosclerosis in apolipoprotein E-deficient (Apoe-/-) mice. However, the contribution of Fn-EDA in advanced atherosclerosis remains poorly characterized. We determined the contribution of Fn-EDA in advanced atherosclerotic lesions of aged (1-year-old) Apoe-/- mice. Approach and

Results

Plaque composition was determined in the innominate artery, a plaque instability site that is known to mimic several histological features of vulnerable human plaques. Female Apoe-/-, Fn-EDA-/-Apoe-/-, TLR4-/-Apoe-/-, and Fn-EDA-/-TLR4-/-Apoe-/- mice were fed a high-fat Western diet for 44 weeks. Fn-EDA-/-Apoe-/- mice exhibited reduced plaque size characterized by smaller necrotic cores, thick fibrous caps containing abundant vascular smooth muscle cells and collagen, reduced CD68/MMP9 (matrix metalloproteinase 9)-positive content, less accumulation of MMP-cleaved extracellular matrix aggrecan, and decreased vascular smooth muscle cell and macrophage apoptosis (P<0.05 versus Apoe-/- mice). Together these findings suggest that Fn-EDA induces plaque destabilization. Deletion of TLR4 reduced histological features of plaque instability in Apoe-/- mice but did not further reduce features of plaque destabilization in Fn-EDA-/-Apoe-/- mice, suggesting that TLR4 may contribute to Fn-EDA-induced plaque destabilization. Fn-EDA potentiated TLR4-dependent MMP9 expression in bone marrow-derived macrophages, suggesting that macrophage TLR4 may contribute to Fn-EDA-mediated plaque instability. Conclusions: Fn-EDA induces histological features of plaque instability in established lesions of aged Apoe-/- mice. The abundance of Fn-EDA in advanced atherosclerotic lesions may increase the risk of plaque destabilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。