The in vitro replication phenotype of hepatitis B virus (HBV) splice variants Sp3 and Sp9 and their impact on wild-type HBV replication

乙肝病毒 (HBV) 剪接变体 Sp3 和 Sp9 的体外复制表型及其对野生型 HBV 复制的影响

阅读:5
作者:Laura C McCoullough, Tomas Sadauskas, Vitina Sozzi, Kai Yan Mak, Hugh Mason, Margaret Littlejohn #, Peter A Revill #

Abstract

Prior to nuclear export, the hepatitis B virus (HBV) pregenomic RNA may be spliced by the host cell spliceosome to form shorter RNA sequences known as splice variants. Due to deletions in the open reading frames, splice variants may encode novel fusion proteins. Although not essential for HBV replication, the role of splice variants and their novel fusion proteins largely remains unknown. Some splice variants and their encoded novel fusion proteins have been shown to impair or promote wild-type HBV replication in vitro, and although splice variants Sp3 and Sp9 are two of the most common splice variants identified to date, their in vitro replication phenotype and their impact on wild-type HBV replication are unclear. Here, we utilize greater than genome-length Sp3 and Sp9 constructs to investigate their replication phenotype in vitro, and their impact on wild-type HBV replication. We show that Sp3 and Sp9 were incapable of autonomous replication, which was rescued by providing the polymerase and core proteins in trans. Furthermore, we showed that Sp3 had no impact on wild-type HBV replication, whereas Sp9 strongly reduced wild-type HBV replication in co-transfection experiments. Knocking out Sp9 novel precore-surface and core-surface fusion protein partially restored replication, suggesting that these proteins contributed to suppression of wild-type HBV replication, providing further insights into factors regulating HBV replication in vitro. Importance: The role of hepatitis B virus (HBV) splice variants in HBV replication and pathogenesis currently remains largely unknown. However, HBV splice variants have been associated with the development of hepatocellular carcinoma, suggesting a role in HBV pathogenesis. Several in vitro co-transfection studies have shown that different splice variants have varying impacts on wild-type HBV replication, perhaps contributing to viral persistence. Furthermore, all splice variants are predicted to produce novel fusion proteins. Sp1 hepatitis B splice protein contributes to liver disease progression and apoptosis; however, the function of other HBV splice variant novel fusion proteins remains largely unknown. We show that Sp9 markedly impairs HBV replication in a cell culture co-transfection model, mediated by expression of Sp9 novel fusion proteins. In contrast, Sp3 had no effect on wild-type HBV replication. Together, these studies provide further insights into viral factors contributing to regulation of HBV replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。