Effect of small-molecule-binding affinity on tumor uptake in vivo: a systematic study using a pretargeted bispecific antibody

小分子结合亲和力对体内肿瘤摄取的影响:使用预靶向双特异性抗体的系统研究

阅读:3
作者:Kelly Davis Orcutt, John J Rhoden, Benjamin Ruiz-Yi, John V Frangioni, K Dane Wittrup

Abstract

Small-molecule ligands specific for tumor-associated surface receptors have wide applications in cancer diagnosis and therapy. Achieving high-affinity binding to the desired target is important for improving detection limits and for increasing therapeutic efficacy. However, the affinity required for maximal binding and retention remains unknown. Here, we present a systematic study of the effect of small-molecule affinity on tumor uptake in vivo with affinities spanning a range of three orders of magnitude. A pretargeted bispecific antibody with different binding affinities to different DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based small molecules is used as a receptor proxy. In this particular system targeting carcinoembryonic antigen, a small-molecule-binding affinity of 400 pmol/L was sufficient to achieve maximal tumor targeting, and an improvement in affinity to 10 pmol/L showed no significant improvement in tumor uptake at 24 hours postinjection. We derive a simple mathematical model of tumor targeting using measurable parameters that correlates well with experimental observations. We use relations derived from the model to develop design criteria for the future development of small-molecule agents for targeted cancer therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。