Distinct Adaptations of Mitochondrial Dynamics to Electrical Pulse Stimulation in Lean and Severely Obese Primary Myotubes

瘦型和重度肥胖型原发性肌管中线粒体动力学对电脉冲刺激的独特适应性

阅读:5
作者:Benjamin A Kugler, Wenqian Deng, Bergomi Francois, Meaghan Anderson, J Matthew Hinkley, Joseph A Houmard, Philimon N Gona, Kai Zou

Background

Skeletal muscle from lean and obese subjects elicits differential adaptations in response to exercise/muscle contractions. In order to determine whether obesity alters the adaptations in mitochondrial dynamics in response to exercise/muscle contractions and whether any of these distinct adaptations are linked to alterations in insulin sensitivity, we compared the effects of electrical pulse stimulation (EPS) on mitochondrial network structure and regulatory proteins in mitochondrial dynamics in myotubes from lean humans and humans with severe obesity and evaluated the correlations between these regulatory proteins and insulin signaling.

Conclusions

Our data demonstrated that EPS induces more fused mitochondrial networks, which are associated with differential adaptations in mitochondrial dynamic processes in myotubes from lean humans and human with severe obesity. It also suggests that improved insulin signaling after muscle contractions may be linked to the reduction in Drp1 activity.

Methods

Myotubes from human skeletal muscle cells obtained from lean humans (body mass index, 23.8 ± 1.67 kg·m-2) and humans with severer obesity (45.5 ± 2.26 kg·m-2; n = 8 per group) were electrically stimulated for 24 h. Four hours after EPS, mitochondrial network structure, protein markers of insulin signaling, and mitochondrial dynamics were assessed.

Results

EPS enhanced insulin-stimulated AktSer473 phosphorylation, reduced the number of nonnetworked individual mitochondria, and increased the mitochondrial network size in both groups (P < 0.05). Mitochondrial fusion marker mitofusin 2 was significantly increased in myotubes from the lean subjects (P < 0.05) but reduced in subjects with severe obesity (P < 0.05). In contrast, fission marker dynamin-related protein 1 (Drp1Ser616) was reduced in myotubes from subjects with severe obesity (P < 0.05) but remained unchanged in lean subjects. Reductions in DrpSer616 phosphorylation were correlated with improvements in insulin-stimulated AktSer473 phosphorylation after EPS (r = -0.679, P = 0.004). Conclusions: Our data demonstrated that EPS induces more fused mitochondrial networks, which are associated with differential adaptations in mitochondrial dynamic processes in myotubes from lean humans and human with severe obesity. It also suggests that improved insulin signaling after muscle contractions may be linked to the reduction in Drp1 activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。