Epithelial Basement Membrane Regeneration After PRK-Induced Epithelial-Stromal Injury in Rabbits: Fibrotic Versus Non-fibrotic Corneal Healing

兔 PRK 诱发的上皮基质损伤后的上皮基底膜再生:纤维化与非纤维化角膜愈合

阅读:7
作者:Rodrigo Carlos de Oliveira, Lycia Pedral Sampaio, Thomas Michael Shiju, Marcony R Santhiago, Steven E Wilson

Conclusions

Defective incorporation of perlecan into the regenerating EBM by subepithelial myofibroblasts, and likely their precursor cells, underlies the development and persistence of stromal fibrosis after PRK corneal injury. [J Refract Surg. 2022;38(1):50-60.].

Methods

Rabbits (120 total) had either epithelial scrape alone, -4.50 diopters (D) PRK, -9.00 D PRK, or no surgery. Immunohistochemistry was performed on cryofixed corneas at time points from unwounded to 8 weeks (four corneas at each time point in each group). Multiplex immunohistochemistry was performed for EBM components, including collagen type IV, laminin beta-3, laminin alpha-5, perlecan, and nidogen-1. Stromal cellular composition was studied by triplex immunohistochemistry for keratocan, vimentin, and alpha-smooth muscle actin (SMA).

Purpose

To study epithelial basement membrane (EBM) regeneration in non-fibrotic and fibrotic corneas after photorefractive keratectomy (PRK).

Results

PRK-injured EBM significantly regenerated by 4 days after surgery. However, early TGF-beta-regulating perlecan incorporation into the nascent EBM declined 4 to 7 days after surgery in fibrotic corneas. Non-fibrotic corneas that had fully regenerated EBM (with all five components incorporated into the EBM) were transparent and had few SMA-positive myofibroblasts in the stroma. Conversely, corneas with defective nascent EBM that lacked perlecan developed many anterior stromal myofibroblasts and fibrosis at 3 to 4 weeks after surgery and had large amounts of collagen type IV in the nascent EBM and anterior stroma. Myofibroblasts synthesized perlecan but were incompetent to incorporate the heparin sulfate proteoglycan into the nascent EBM. Corneal transparency was restored over several months even in fibrotic corneas, and this was associated with a return of EBM perlecan, myofibroblast disappearance, and reabsorption of disordered extracellular matrix. Conclusions: Defective incorporation of perlecan into the regenerating EBM by subepithelial myofibroblasts, and likely their precursor cells, underlies the development and persistence of stromal fibrosis after PRK corneal injury. [J Refract Surg. 2022;38(1):50-60.].

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。