The autoimmune encephalitis-related cytokine TSLP in the brain primes neuroinflammation by activating the JAK2-NLRP3 axis

脑中的自身免疫性脑炎相关细胞因子 TSLP 通过激活 JAK2-NLRP3 轴引发神经炎症

阅读:4
作者:Xueyuan Yu, Jiajia Lv, Jun Wu, Yong Chen, Fei Chen, Li Wang

Abstract

NLRP3 inflammasome hyperactivation contributes to neuroinflammation in autoimmune disorders, but the underlying regulatory mechanism remains to be elucidated. We demonstrate that compared with wild-type (WT) mice, mice lacking thymic stromal lymphopoietin (TSLP) receptor (TSLPR) (Tslpr-/- mice) exhibit a significantly decreased experimental autoimmune encephalomyelitis (EAE) score, reduced CD4+ T cell infiltration, and restored myelin basic protein (MBP) expression in the brain after EAE induction by myelin oligodendrocyte glycoprotein35-55 (MOG35-55). TSLPR signals through Janus kinase (JAK)2, but not JAK1 or JAK3, to induce NLRP3 expression, and Tslpr-/- mice with EAE show decreased JAK2 phosphorylation and NLRP3 expression in the brain. JAK2 inhibition by ruxolitinib mimicked loss of TSLPR function in vivo and further decreased TSLP expression in the EAE mouse brain. The NLRP3 inhibitor MCC950 decreased CD4+ T cell infiltration, restored MBP expression, and decreased IL-1β and TSLP levels, verifying the pro-inflammatory role of NLRP3. In vitro experiments using BV-2 murine microglia revealed that TSLP directly induced NLRP3 expression, phosphorylation of JAK2 but not JAK1orJAK3, and IL-1β release, which were markedly inhibited by ruxolitinib. Furthermore, EAE induction led to an increase in the Th17 cell number, a decrease in the regulatory T (Treg) cell number in the blood, and an increase in the expression of the cytokine IL-17A in the WT mouse brain, which was drastically reversed in Tslpr-/- mice. In addition, ruxolitinib suppressed the increase in IL-17A expression in the EAE mouse brain. These findings identify TSLP as a prospective target for treating JAK2-NLRP3 axis-associated autoimmune inflammatory disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。