Upregulation of anticoagulant proteins, protein S and tissue factor pathway inhibitor, in the mouse myocardium with cardio-specific TNF-α overexpression

抗凝蛋白、蛋白 S 和组织因子途径抑制剂在心脏特异性 TNF-α 过表达的小鼠心肌中上调

阅读:4
作者:Yoshihiro Higuchi, Toru Kubota, Masamichi Koyanagi, Toyoki Maeda, Arthur M Feldman, Naoki Makino

Abstract

Heart failure (HF) has been recognized as a hypercoagulable state. However, the natural anticoagulation systems in the failing heart have not been studied. Recent experimental and clinical data have indicated that not only the thrombomodulin (TM)/protein C (PC) pathway but also the protein S (PS)/tissue factor pathway inhibitor (TFPI) system function as potent natural anticoagulants. To investigate the balance between procoagulant and anticoagulant activities in the failing heart, we measured the cardiac expression of tissue factor (TF), type 1 plasminogen activator inhibitor (PAI-1), TM, PC, PS, and TFPI by RT-PCR and/or Western blot analysis in male transgenic (TG) mice with heart-specific overexpression of TNF-α. Both procoagulant (TF and PAI-1) and anticoagulant (PS and TFPI) factors were upregulated in the myocardium of 24-wk-old TG (end-stage HF) but not in that of 4-wk-old TG (early decompensated HF) compared with the wild-type mice. Both factors were also upregulated in the infarcted myocardium at 3 days after coronary ligation in the wild-type mice. The expression of TM was downregulated in the TG heart, and PC was not detected in the hearts. The transcript levels of PS orphan receptors, Mer and Tyro3, but not Axl, were significantly upregulated in the TG heart. Double immunohistochemical staining revealed that myocardial infiltrating CD3-positive T cells may produce PS in the TG myocardium. In conclusion, the PS/TFPI was upregulated in the myocardium of a different etiological model of HF, thus suggesting a role for the PS/TFPI system in the protection of the failing heart under both inflammatory and hypercoagulable states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。