Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy

线粒体在阻塞性肾病期间帕立骨化醇介导的细胞保护中的作用

阅读:6
作者:Isabel Mercedes García, Liliana Altamirano, Luciana Mazzei, Miguel Fornés, Marisa Nile Molina, León Ferder, Walter Manucha

Abstract

Vitamin D slows the progression of chronic kidney disease. Furthermore, activators of vitamin D receptors (VDR) have suppressant effects on the renin-angiotensin system, as well as anti-inflammatory and antifibrotic actions. This study aimed to evaluate the cytoprotective effects of paricalcitol, a VDR activator, at the mitochondrial level using an obstructive nephropathy model [unilateral ureteral obstruction (UUO)]. Rats subjected to UUO and controls were treated daily with vehicle or paricalcitol. The control group underwent a sham surgery. The treatment was done for 15 days (30 ng/kg). The following were determined: biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; VDR, AT(1) receptor, and NADPH oxidase 4 expression; and NADPH oxidase activity (in total and in mitochondrial fractions from the renal cortex). VDR activation prevented fibrosis (20 ± 5 vs. 60 ± 10%) and the number of TUNEL-positive apoptotic cells (10 ± 3 vs. 25 ± 4) in UUO. Biochemical, histological, and molecular studies suggest mitochondrial injury. Electron microscopy revealed in UUO electronically luminous material in the nucleus. Some mitochondria were increased in size and contained dilated crests and larger than normal spaces in their interiors. These changes were not present with paricalcitol treatment. Additionally, high AT(1)-receptor mRNA and NADPH activity was reverted in mitochondrial fractions from obstructed paricalcitol-treated animals (0.58 ± 0.06 vs. 0.95 ± 0.05 relative densitometry units and 9,000 ± 800 vs. 15,000 ± 1,000 relative fluorescence units·μg protein(-1)·min(-1), respectively). These changes were consistent with an improvement in VDR expression (0.75 ± 0.05 vs. 0.35 ± 0.04 relative densitometry units). These results suggest that paricalcitol confers a protective effect and reveal, as well, a possible AT(1) receptor-dependent protective effect that occurs at the mitochondrial level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。