Dysregulation of Streptococcus pneumoniae zinc homeostasis breaks ampicillin resistance in a pneumonia infection model

肺炎链球菌锌稳态失调导致肺炎感染模型中的氨苄青霉素耐药性

阅读:4
作者:Erin B Brazel, Aimee Tan, Stephanie L Neville, Amy R Iverson, Saumya R Udagedara, Bliss A Cunningham, Mwilye Sikanyika, David M P De Oliveira, Bernhard Keller, Lisa Bohlmann, Ibrahim M El-Deeb, Katherine Ganio, Bart A Eijkelkamp, Alastair G McEwan, Mark von Itzstein, Megan J Maher, Mark J Walker, Ja

Abstract

Streptococcus pneumoniae is the primary cause of community-acquired bacterial pneumonia with rates of penicillin and multidrug-resistance exceeding 80% and 40%, respectively. The innate immune response generates a variety of antimicrobial agents to control infection, including zinc stress. Here, we characterize the impact of zinc intoxication on S. pneumoniae, observing disruptions in central carbon metabolism, lipid biogenesis, and peptidoglycan biosynthesis. Characterization of the pivotal peptidoglycan biosynthetic enzyme GlmU indicates a sensitivity to zinc inhibition. Disruption of the sole zinc efflux pathway, czcD, renders S. pneumoniae highly susceptible to β-lactam antibiotics. To dysregulate zinc homeostasis in the wild-type strain, we investigated the safe-for-human-use ionophore 5,7-dichloro-2-[(dimethylamino)methyl]quinolin-8-ol (PBT2). PBT2 rendered wild-type S. pneumoniae strains sensitive to a range of antibiotics. Using an invasive ampicillin-resistant strain, we demonstrate in a murine pneumonia infection model the efficacy of PBT2 + ampicillin treatment. These findings present a therapeutic modality to break antibiotic resistance in multidrug-resistant S. pneumoniae.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。