Matricellular Protein SMOC2 Potentiates BMP9-Induced Osteogenic Differentiation in Mesenchymal Stem Cells through the Enhancement of FAK/PI3K/AKT Signaling

基质细胞蛋白 SMOC2 通过增强 FAK/PI3K/AKT 信号传导增强 BMP9 诱导的间充质干细胞成骨分化

阅读:5
作者:Wen-Ge He, Yi-Xuan Deng, Kai-Xin Ke, Xuan-Lin Cao, Si-Yuan Liu, Yuan-Yuan Yang, Hong-Hong Luo, Xin-Tong Yao, Xiang Gao, Yu Du, Bai-Cheng He, Liang Chen

Abstract

Mesenchymal stem cells (MSCs) can self-renew and differentiate into multiple lineages, making MSC transplantation a promising option for bone regeneration. Both matricellular proteins and growth factors play an important role in regulating stem cell fate. In this study, we investigated the effects of matricellular protein SMOC2 (secreted modular calcium-binding protein 2) on bone morphogenetic protein 9 (BMP9) in mouse embryonic fibroblasts (MEFs) and revealed a possible molecular mechanism underlying this process. We found that SMOC2 was detectable in MEFs and that exogenous SMOC2 expression potentiated BMP9-induced osteogenic markers, matrix mineralization, and ectopic bone formation, whereas SMOC2 knockdown inhibited these effects. BMP9 increased the levels of p-FAK and p-AKT, which were either enhanced or reduced by SMOC2 and FAK silencing, respectively. BMP9-induced osteogenic markers were increased by SMOC2, and this increase was partially abolished by silencing FAK or LY290042. Furthermore, we found that general transcription factor 2I (GTF2I) was enriched at the promoter region of SMOC2 and that integrin β1 interacted with SMOC2 in BMP9-treated MEFs. Our findings demonstrate that SMOC2 can promote BMP9-induced osteogenic differentiation by enhancing the FAK/PI3K/AKT pathway, which may be triggered by facilitating the interaction between SMOC2 and integrin β1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。