Behavior of E. coli with Variable Surface Morphology Changes on Charged Semiconductor Interfaces

带电半导体界面上表面形态变化大肠杆菌的行为

阅读:4
作者:Divya Iyer, Alexey V Gulyuk, Pramod Reddy, Ronny Kirste, Ramon Collazo, Dennis R LaJeunesse, Albena Ivanisevic

Abstract

Bacterial behavior is often controlled by structural and composition elements of their cell wall. Using genetic mutant strains that change specific aspects of their surface structure, we modified bacterial behavior in response to semiconductor surfaces. We monitored the adhesion, membrane potential, and catalase activity of the Gram-negative bacterium Escherichia coli (E. coli) that were mutant for genes encoding components of their surface architecture, specifically flagella, fimbriae, curli, and components of the lipopolysaccharide membrane, while on gallium nitride (GaN) surfaces with different surface potentials. The bacteria and the semiconductor surface properties were recorded prior to the biofilm studies. The data from the materials and bioassays characterization supports the notion that alteration of the surface structure of the E. coli bacterium resulted in changes to bacterium behavior on the GaN medium. Loss of specific surface structure on the E. coli bacterium reduced its sensitivity to the semiconductor interfaces, while other mutations increase bacterial adhesion when compared to the wild-type control E. coli bacteria. These results demonstrate that bacterial behavior and responses to GaN semiconductor materials can be controlled genetically and can be utilized to tune the fate of living bacteria on GaN surfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。