Improvement of idiopathic pulmonary fibrosis through a combination of Astragalus radix and Angelica sinensis radix via mammalian target of rapamycin signaling pathway-induced autophagy in rat

黄芪当归配伍通过雷帕霉素靶蛋白信号通路诱导大鼠自噬改善特发性肺纤维化

阅读:6
作者:Chao Sun #, Huaman Liu #, Baihong Chi, Jia Han, Yasuhiko Koga, Kamyar Afshar, Xue Liu

Background

There is a major need for effective, well-tolerated treatments for idiopathic pulmonary fibrosis (IPF) in clinic. Astragalus radix (AR; Huangqi) and Angelica sinensis radix (AS; Danggui) have been frequently used in the treatment of IPF. This study aimed to reveal the pharmacological effects and the mechanisms of the action of an AR-AS combination in treating IPF.

Conclusions

The combination of AR and AS protects against IPF by inducing autophagy via inhibiting the mTOR signaling pathway. The synergistic action of AR and AS is superior to that of either AR or AS alone.

Methods

Sprague-Dawley rats were randomly divided into six groups (n=5): control, bleomycin (BLM) model, AR, AS, AR + AS, and prednisone (PDN) groups. A transforming growth factor-β1 (TGF-β1)-induced MRC-5 cell model were also used. Pulmonary fibrosis, inflammation, oxidative stress, and autophagy were evaluated by performing hematoxylin and eosin (H&E) staining, Masson staining, immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and hydroxyproline assay following the treatment of AR, AS, and the AR-AS herb pair.

Results

Rats administered the AR-AS herb pair had lower α-smooth muscle actin (α-SMA), collagen I, fibronectin, and vimentin levels in lung tissues, and lower inflammatory cytokine levels in rat serum. In addition, the AR-AS herb pair induced mammalian target of rapamycin (mTOR)-mediated autophagy and reduced oxidative stress in BLM-induced rats. The effects of the AR and AS combination were confirmed in MRC-5 cells treated with TGF-β1. Specifically, the combination of AR and AS attenuated MRC-5 cell fibrosis, inflammation, and oxidative stress while inducing autophagy. Conclusions: The combination of AR and AS protects against IPF by inducing autophagy via inhibiting the mTOR signaling pathway. The synergistic action of AR and AS is superior to that of either AR or AS alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。