Modulation of Macrophage Functional Polarity towards Anti-Inflammatory Phenotype with Plasmid DNA Delivery in CD44 Targeting Hyaluronic Acid Nanoparticles

利用靶向 CD44 的透明质酸纳米粒子中的质粒 DNA 递送来调节巨噬细胞功能极性以实现抗炎表型

阅读:5
作者:Thanh-Huyen Tran, Ruchir Rastogi, Juili Shelke, Mansoor M Amiji

Abstract

The purpose of this study was to modulate macrophage polarity from the pro-inflammatory M1 to anti-inflammatory M2 phenotype using plasmid DNA (pDNA) expressing interleukin-4 (IL4) or interleukin-10 (IL10)-encapsulated in hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles (NPs). The HA-PEI/pDNA NPs with spherical shape, average size of 186 nm were efficiently internalized by J774A.1 macrophages. Transfection of HA-PEI/pDNA-IL4 and HA-PEI/pDNA-IL10 NPs increased IL4 and IL10 gene expression in J774 macrophages which could re-program the macrophages from M1 to M2 phenotype as evidenced by a significant increase in the Arg/iNOS level, and upregulation of CD206 and CD163 compared to untreated macrophages. Following intraperitoneal (IP) injection to C57BL/6 mice, HA-PEI NPs effectively targeted peritoneal macrophages over-expressing CD44 receptor. In an in vivo model of stimulated peritoneal macrophages, IP administration of HA-PEI/pDNA-IL4 and HA-PEI/pDNA-IL10 to C57BL/6 mice significantly increased the Arg/iNOS ratio and CD163 expression in the cells. Furthermore, HA-PEI/pDNA-IL10 NPs significantly increased peritoneal and serum IL10 levels which effectively suppressed LPS-induced inflammation by reducing level of TNF-α and IL-1β in peritoneal macrophages and in the peritoneal fluid. The results demonstrated that pDNA-IL10-encapsulate HA-PEI NPs skewed macrophage functional polarity from M1 toward an anti-inflammatory M2 phenotype which may be a promising platform for the treatment of inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。