Single-Component Adsorption Equilibria of CO2, CH4, Water, and Acetone on Tapered Porous Carbon Molecular Sieves

锥形多孔碳分子筛上 CO2、CH4、水和丙酮的单组分吸附平衡

阅读:6
作者:Ojuolape O Oghenetega, Pasquale Fulvio, N Scott Bobbitt, Krista S Walton

Abstract

Engineered carbon molecular sieves (CMSs) with tapered pores, high surface area, and high total pore volume were investigated for their CO2, CH4, water, and acetone adsorption properties at 288.15, 298.15, 308.15 K, and pressures of <1 bar. The results were compared with BPL carbon. The samples exhibited higher adsorption capacity for CO2 compared to BPL carbon, with Carboxen 1005 being the highest due to the presence of ultramicropores (pores smaller than 0.8 nm). Similar observations were made for CH4 except at 288.15 K. Although the CMSs exhibited higher hydrophobicity than BPL carbon, the latter had the highest acetone uptake for all investigated temperatures due to its higher oxygen content, which facilitates stronger interactions with polar VOC molecules. Heats of adsorption were calculated using the Clausius-Clapeyron equation after fitting the isotherms with the dual-site Langmuir-Freundlich model, and results largely corroborated the order of adsorption capacities of CO2, CH4, and water on the carbon materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。