Identification of potential oxidative stress biomarkers for spinal cord injury in erythrocytes using mass spectrometry

使用质谱法鉴定红细胞中脊髓损伤的潜在氧化应激生物标志物

阅读:4
作者:Li-Jian Zhang, Yao Chen, Lu-Xuan Wang, Xiao-Qing Zhuang, He-Chun Xia

Abstract

Oxidative stress is a hallmark of secondary injury associated with spinal cord injury. Identifying stable and specific oxidative biomarkers is of important significance for studying spinal cord injury-associated secondary injury. Mature erythrocytes do not contain nuclei and mitochondria and cannot be transcribed and translated. Therefore, mature erythrocytes are highly sensitive to oxidative stress and may become a valuable biomarker. In the present study, we revealed the proteome dynamics of protein expression in erythrocytes of beagle dogs in the acute and subacute phases of spinal cord injury using mass spectrometry-based approaches. We found 26 proteins that were differentially expressed in the acute (0-3 days) and subacute (7-21 days) phases of spinal cord injury. Bioinformatics analysis revealed that these differentially expressed proteins were involved in glutathione metabolism, lipid metabolism, and pentose phosphate and other oxidative stress pathways. Western blot assays validated the differential expression of glutathione synthetase, transaldolase, and myeloperoxidase. This result was consistent with mass spectrometry results, suggesting that erythrocytes can be used as a novel sample source of biological markers of oxidative stress in spinal cord injury. Glutathione synthetase, transaldolase, and myeloperoxidase sourced from erythrocytes are potential biomarkers of oxidative stress after spinal cord injury. This study was approved by the Experimental Animal Centre of Ningxia Medical University, China (approval No. 2017-073) on February 13, 2017.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。