Suggested Procedures for the Reproducible Synthesis of Poly(d,l-lactide-co-glycolide) Nanoparticles Using the Emulsification Solvent Diffusion Platform

使用乳化溶剂扩散平台进行聚(d,l-丙交酯-共-乙醇酸)纳米粒子的可重复合成的建议程序

阅读:6
作者:Shadabul Haque, Ben J Boyd, Michelle P McIntosh, Colin W Pouton, Lisa M Kaminskas, Michael Whittaker

Background

Poly(d,l-lactide-co-glycolide) (PLGA) based biodegradable nanoparticles are of key interest for the development of controlled release drug delivery systems and for other biomedical applications. It has been reported that PLGA polymers can be converted into colloidal nanoparticulate systems by various techniques, such as emulsification-diffusion, emulsification-evaporation, interfacial deposition, salting out, dialysis and nanoprecipitation. Emulsification-evaporation with water immisci-ble solvents including dichloromethane and chloroform has been the preferred method for the synthesis of PLGA nanoparticles due to the low boiling point and limited water solubility of these solvents. We and others, however, have found that when water-immiscible solvents are used for the synthesis of PLGA nanoparticles, particle aggregation, non-uniform particle size and multimodal size distribution are commonly encountered problems. This suggests that the synthesis of PLGA nanoparticles using water immiscible solvents is highly sensitive to small procedural variations that affect overall reproduc-ibility.

Conclusion

Emulsification-diffusion with ethyl acetate is, therefore, a more reliable alternative to sev-eral existing procedures for the reproducible and refined synthesis of PLGA nanoparticles.

Objective

This study presents a simple and robust procedure for the preparation of PLGA nanoparti-cles with very small batch to batch variability (<5% variability in size (z-average) as determined by dynamic light scattering).

Results

The results showed that the emulsification solvent diffusion method teamed with partially water-miscible solvents, such as ethyl acetate, is a versatile approach for the preparation of PLGA na-noparticles with highly reproducible sizes (between 50 and 400 nm) and zeta potentials (between -30 and +30 mV), with relatively narrow polydispersity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。