Hesperidin enhances intestinal barrier function in Caco-2 cell monolayers via AMPK-mediated tight junction-related proteins

橙皮苷通过 AMPK 介导的紧密连接相关蛋白增强 Caco-2 细胞单层肠道屏障功能

阅读:5
作者:Ha-Young Park, Jin-Hee Yu

Abstract

The intestinal epithelium is a single-cell layer on the mucosal surface that absorbs food-derived nutrients and functions as a barrier that protects mucosal integrity. Hesperidin (hesperetin-7-rhamnoglucoside) is a flavanone glycoside composed of the flavanone hesperetin and the disaccharide rutinose, which has various physiological benefits, including antioxidative, anti-inflammatory, and antiallergic effects. Here, we used human intestinal Caco-2 cell monolayers to examine the effect of hesperidin on intestinal barrier function. Hesperidin-treated Caco-2 cell monolayers displayed enhanced intestinal barrier integrity, as indicated by an increase in transepithelial electrical resistance (TEER) and a decreased apparent permeability (Papp ) for fluorescein. Hesperidin elevated the mRNA and protein levels of occludin, MarvelD3, JAM-1, claudin-1, and claudin-4, which are encoded by tight junction (TJ)-related genes. Moreover, hesperidin significantly increased the phosphorylation of AMP-activated protein kinase (AMPK), indicating improved intestinal barrier function. Thus, our results suggest that hesperidin enhances intestinal barrier function by increasing the expression of TJ-related occludin, MarvelD3, JAM-1, and claudin-1 via AMPK activation in human intestinal Caco-2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。