Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy

NPC1L1 的抑制会破坏耐药持久细胞对化疗的适应性反应

阅读:8
作者:Zhe Zhang #, Siyuan Qin #, Yan Chen #, Li Zhou, Mei Yang, Yongquan Tang, Jing Zuo, Jian Zhang, Atsushi Mizokami, Edouard C Nice, Hai-Ning Chen, Canhua Huang, Xiawei Wei

Abstract

Entering a drug-tolerant persister (DTP) state of cancer cells is a transient self-adaptive mechanism by which a residual cell subpopulation accelerates tumor progression. Here, we identified the acquisition of a DTP phenotype in multidrug-resistant (MDR) cancer cells as a tolerance response to routine combination treatment. Characterization of MDR cancer cells with a DTP state by RNA-seq revealed that these cells partially prevented chemotherapy-triggered oxidative stress by promoting NPC1L1-regulated uptake of vitamin E. Treatment with the NPC1L1 inhibitor ezetimibe further enhanced the therapeutic effect of combinatorial therapy by inducing methuosis. Mechanistically, we demonstrated that NRF2 was involved in transcriptional regulation of NPC1L1 by binding to the -205 to -215 bp site on its promoter. Decreased DNA methylation was also related partially to this process. Furthermore, we confirmed that a triple-combination of chemotherapeutic agents, verapamil, and ezetimibe, had a significant anti-tumor effect and prevented tumor recurrence in mice. Together, our study provides a novel insight into the role of DTP state and emphasizes the importance of disrupting redox homeostasis during cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。