Integrative approach using network pharmacology, bioinformatics, and experimental methods to explore the mechanism of cantharidin in treating colorectal cancer

综合运用网络药理学、生物信息学及实验方法探讨斑蝥素治疗结直肠癌的作用机制

阅读:8
作者:Benchao Hou, Xiaomin Wang, Zhijian He, Haiyun Liu

Abstract

Cantharidin, a terpenoid produced by blister beetles, has been used in traditional Chinese medicine to treat various ailments and cancers. However, its biological activity, impact, and anticancer mechanisms remain unclear. The Cantharidin chemical gene connections were identified using various databases. The GSE21815 dataset was used to collect the gene expression information. Differential gene analysis and gene ontology analyses were performed. Gene set enrichment analysis was used to assess the activation of disease pathways. Weighted gene co-expression network analysis and differential analysis were used to identify illness-associated genes, examine differential genes, and discover therapeutic targets via protein-protein interactions. MCODE analysis of major subgroup networks was used to identify critical genes influenced by Cantharidin, examine variations in the expression of key clustered genes in colorectal cancer vs. control samples, and describe the subject operators. Single-cell GSE188711 dataset was preprocessed to investigate Cantharidin's therapeutic targets and signaling pathways in colorectal cancer. Single-cell RNA sequencing was utilized to identify 22 cell clusters and marker genes for two different cell types in each cluster. The effects of different Cantharidin concentrations on colorectal cancer cells were studied in vitro. One hundred and ninety-seven Cantharidin-associated target genes and 480 critical genes implicated in the development of the illness were identified. Cantharidin significantly inhibited the proliferation and migration of HCT116 cells and promoted apoptosis at certain concentrations. Patients on current therapy develop inherent and acquired resistance. Our study suggests that Cantharidin may play an anti-CRC role by modulating immune function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。