Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury

金盏花苷E通过促进L型钙通道与Bcl2相关的Athanogene 3相互作用抑制钙超载,减轻心肌缺血/再灌注损伤

阅读:5
作者:Ruiying Wang, Min Wang, Jiahui Zhou, Ziru Dai, Guibo Sun, Xiaobo Sun

Conclusion

Our results demonstrate that CE enhanced LTCC-BAG3 interaction to reduce MI/R induced-calcium overload, exerting a cardioprotective effect.

Methods

To verify whether CE mediated cardiac protection in vivo and in vitro, we performed MI/R surgery in SD rats and subjected neonatal rat ventricular myocytes (NRVMs) to hypoxia-reoxygenation (HR). CE's cardioprotective against MI/R injury was detected by Evans blue/TTC staining, echocardiography, HE staining, myocardial enzyme levels. Impedance and field potential recording, and patch-clamp techniques of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to detect the function of L-type calcium channels (LTCC). The mechanisms underlying between CE and LTCC was studied through western blot, immunofluorescence, and immunohistochemistry. Drug affinity responsive target stability (DARTS) and co-immunoprecipitation (co-IP) used to further clarify the effect of CE on LTCC and BAG3.

Results

We found that CE protected against MI/R injury by inhibiting calcium overload. Furthermore, CE improved contraction and field potential signals of hiPSC-CMs and restored sarcomere contraction and calcium transient of adult rat ventricular myocytes (ARVMs). Moreover, patch-clamp data showed that CE suppressed increased L-type calcium current (ICa,L) caused by LTCC agonist, proving that CE could regulate calcium homeostasis through LTCC. Importantly, we found that CE promoted the interaction between LTCC and Bcl2-associated athanogene 3 (BAG3) by co-IP and DARTS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。