Beta-catenin cleavage enhances transcriptional activation

β-catenin 裂解增强转录激活

阅读:5
作者:Tatiana Goretsky, Emily M Bradford, Qing Ye, Olivia F Lamping, Tomas Vanagunas, Mary Pat Moyer, Patrick C Keller, Preetika Sinh, Josep M Llovet, Tianyan Gao, Qing-Bai She, Linheng Li, Terrence A Barrett

Abstract

Nuclear activation of Wnt/β-catenin signaling is required for cell proliferation in inflammation and cancer. Studies from our group indicate that β-catenin activation in colitis and colorectal cancer (CRC) correlates with increased nuclear levels of β-catenin phosphorylated at serine 552 (pβ-Cat552). Biochemical analysis of nuclear extracts from cancer biopsies revealed the existence of low molecular weight (LMW) pβ-Cat552, increased to the exclusion of full size (FS) forms of β-catenin. LMW β-catenin lacks both termini, leaving residues in the armadillo repeat intact. Further experiments showed that TCF4 predominantly binds LMW pβ-Cat552 in the nucleus of inflamed and cancerous cells. Nuclear chromatin bound localization of LMW pβ-Cat552 was blocked in cells by inhibition of proteasomal chymotrypsin-like activity but not by other protease inhibitors. K48 polyubiquitinated FS and LMW β-catenin were increased by treatment with bortezomib. Overexpressed in vitro double truncated β-catenin increased transcriptional activity, cell proliferation and growth of tumor xenografts compared to FS β-catenin. Serine 552-> alanin substitution abrogated K48 polyubiquitination, β-catenin nuclear translocation and tumor xenograft growth. These data suggest that a novel proteasome-dependent posttranslational modification of β-catenin enhances transcriptional activation. Discovery of this pathway may be helpful in the development of diagnostic and therapeutic tools in colitis and cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。