Cimifugin suppresses type 2 airway inflammation by binding to SPR and regulating its protein expression in a non-enzymatic manner

升麻黄素通过与 SPR 结合并以非酶方式调节其蛋白表达来抑制 2 型呼吸道炎症

阅读:5
作者:Xiaoqun Gu, Yanyan Chen, Peiyao Qian, Ting He, Yameng Wu, Wei Lin, Jie Zheng, Min Hong

Background

Cimifugin is one of the main bioactive components of Yu-Ping-Feng-San, a well-known traditional Chinese medicine, which can effectively relieve Allergic asthma (AA) and atopic dermatitis and reduce recurrence in clinic. However, the underlying mechanism of cimifugin on AA is still unknown.

Conclusions

To our knowledge, we're reporting for the first time that cimifugin can suppresses type 2 airway inflammation to alleviate AA by directly binding to SPR and regulating its protein expression in a non-enzymatic manner.

Methods

The effect of cimifugin on AA was demonstrated in vivo and in vitro. Sepiapterin reductase (SPR) was predicted as the most potent target of cimifugin in treating AA by reverse docking. Molecular docking and microscale thermophoresis (MST) were used to analyze the direct binding between cimifugin and SPR. Overexpression and interference of SPR were performed to verify whether targeting SPR is a key step of cimifugin in the treatment of AA. QM385, an inhibitor of SPR, was administrated in vivo and in vitro to evaluate the role of SPR in AA. Further, HPLC and cell-free direct hSPR enzyme activity assay were performed to research whether cimifugin regulated SPR by influencing the enzyme activity. Simultaneously, the inhibitors of protein degradation were used in vitro to explore the mechanism of cimifugin on SPR.

Purpose

In the present study, we aimed to investigate the effect and mechanism of cimifugin on AA. Study design: In vivo and in vitro experimental studies were performed.

Results

We found cimifugin effectively alleviated AA by reducing airway hyperresponsiveness, inhibiting type 2 cytokines-mediated airway inflammation, and restoring the expression of epithelial barrier proteins. Molecular docking predicted the direct binding ability of cimifugin to SPR, which was further verified by MST. Notably, the therapeutic effect of cimifugin on AA was dampened with SPR interfering, in contrast, the phenotypic features of AA were significantly alleviated with QM385 application both in vivo and in vitro. Interestingly, cimifugin showed no effect on the enzyme activity of SPR, as the level of its substrate sepiapterin was not affected with cimifugin treatment by cell-free enzyme activity assay. Furthermore, we found cimifugin could reduce SPR protein expression without affecting its mRNA expression probably through autophagosome pathway. Conclusions: To our knowledge, we're reporting for the first time that cimifugin can suppresses type 2 airway inflammation to alleviate AA by directly binding to SPR and regulating its protein expression in a non-enzymatic manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。