Shade represses photosynthetic genes by disrupting the DNA binding of GOLDEN2-LIKE1

阴凉通过破坏 GOLDEN2-LIKE1 的 DNA 结合来抑制光合作用基因

阅读:6
作者:Namuk Kim, Jinkil Jeong, Jeongheon Kim, Jeonghwa Oh, Giltsu Choi

Abstract

PHYTOCHROME-INTERACTING FACTORs (PIFs) repress photosynthetic genes partly by upregulating REPRESSOR OF PHOTOSYNTHETIC GENES 1 (RPGE1) and RPGE2. However, it is unknown how RPGEs inhibit gene expression at the molecular level. Here, we show that Arabidopsis (Arabidopsis thaliana) RPGE overexpression lines display extensive similarities to the golden2-like 1 (glk1)/glk2 double mutant at the phenotypic and transcriptomic levels, prompting us to hypothesize that there is a close molecular relationship between RPGEs and chloroplast development-regulating GLK transcription factors. Indeed, we found that RPGE1 disrupts the homodimerization of GLK1 by interacting with its dimerization domain and debilitates the DNA-binding activity of GLK1. The interaction was not restricted to the Arabidopsis RPGE1-GLK1 pair, but rather extended to RPGE-GLK homolog pairs across species, providing a molecular basis for the pale green leaves of Arabidopsis transgenic lines expressing a rice (Oryza sativa) RPGE homolog. Our discovery of RPGE-GLK regulatory pairs suggests that any condition leading to an increase in RPGE levels would decrease the expression levels of GLK target genes. Consistently, we found that shade, which upregulates the RPGE mRNA by stabilizing PIFs, represses the expression of photosynthetic genes partly by inhibiting the DNA-binding activity of GLK1. Taken together, these results indicate that RPGE-GLK regulatory pairs regulate photosynthetic gene expression downstream of PIFs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。