Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1

遗传证据将 ASTRA 蛋白伴侣成分 Tti2 与 SAGA 转录因子 Tra1 联系起来

阅读:3
作者:Julie Genereaux, Stephanie Kvas, Dominik Dobransky, Jim Karagiannis, Gregory B Gloor, Christopher J Brandl

Abstract

Tra1 is a 3744-residue component of the Saccharomyces cerevisiae SAGA, NuA4, and ASTRA complexes. Tra1 contains essential C-terminal PI3K and FATC domains, but unlike other PIKK (phosphoinositide three-kinase-related kinase) family members, lacks kinase activity. To analyze functions of the FATC domain, we selected for suppressors of tra1-F3744A, an allele that results in slow growth under numerous conditions of stress. Two alleles of TTI2, tti2-F328S and tti2-I336F, acted in a partially dominant fashion to suppress the growth-related phenotypes associated with tra1-F3744A as well as its resulting defects in transcription. tti2-F328S suppressed an additional FATC domain mutation (tra1-L3733A), but not a mutation in the PI3K domain or deletions of SAGA or NuA4 components. We find eGFP-tagged Tti2 distributed throughout the cell. Tti2 is a component of the ASTRA complex, and in mammalian cells associates with molecular chaperones in complex with Tti1 and Tel2. Consistent with this finding, Tra1 levels are reduced in a strain with a temperature-sensitive allele of tel2. Further agreeing with a possible role for Tti2 in the folding or stabilization of Tra1, tra1-F3744A was mislocalized to the cytoplasm, particularly under conditions of stress. Since an intragenic mutation of tra1-R3590I also suppressed F3744A, we propose that Tti2 is required for the folding/stability of the C-terminal FATC and PI3K domains of Tra1 into their functionally active form.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。