Prolonged exposure to simulated microgravity diminishes dendritic cell immunogenicity

长时间暴露于模拟微重力会降低树突状细胞的免疫原性

阅读:9
作者:Nichole Tackett, Jillian H Bradley, Emily K Moore, Stefanie H Baker, Stephanie L Minter, Brian DiGiacinto, Jennifer P Arnold, Randal K Gregg

Abstract

Immune dysfunction due to microgravity remains a hurdle in the next step of human space exploration. Dendritic cells (DC) represent a critical component of immunity, given their role in the detection of invaders and the subsequent task of activating T cells to respond and eliminate the threat. Upon encounter with microbes, DC undergo a process of maturation, whereby the cells upregulate the expression of surface proteins and secrete cytokines, both required for the optimal activation of CD4+ and CD8+ T cells. In this study, DC were cultured from 2-14 days in a rotary cell culture system, which generates a simulated microgravity (SMG) environment, and then the cells were assessed for maturation status and the capacity to activate T cells. Short-term culture (<72 h) of DC in SMG resulted in an increased expression of surface proteins associated with maturation and interleukin-6 production. Subsequently, the SMG exposed DC were superior to Static control DC at activating both CD4+ and CD8+ T cells as measured by interleukin-2 and interferon-γ production, respectively. However, long-term culture (4-14 d) of DC in SMG reduced the expression of maturation markers and the capacity to activate T cells as compared to Static DC controls.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。