Effects of the application of low-temperature atmospheric plasma on titanium implants on wound healing in peri-implant connective tissue in rats

低温常压等离子体对大鼠钛种植体周围结缔组织伤口愈合的影响

阅读:6
作者:Atsuro Harada, Hodaka Sasaki, Yosuke Asami, Kiyotoshi Hanazawa, Sota Miyazaki, Hideshi Sekine, Yasutomo Yajima

Conclusions

The handheld low-temperature atmospheric pressure plasma device provided hydrophilicity on the Ti surface and maintained the width of the contact area of PICT to the implant surface as a result of accelerated collagen maturation and fibroblast adhesion, compared to no plasma application.

Methods

Hydrophilization to a Ti disk using a handheld low-temperature atmospheric pressure plasma device was evaluated by a contact angle test and compared with an untreated group. In in vivo experiments, plasma-treated pure Ti implants using a handheld plasma device (experimental group: PL) and untreated implants (control group: Cont) were placed into the rat upper molar socket, and samples were harvested at 3, 7 and 14 days after surgery. Histological evaluation was performed to assess biological sealing, collagen- and cell adhesion-related gene expression by reverse transcription quantitative polymerase chain reaction, collagen fiber detection by Picrosirius Red staining, and immunohistochemistry for integrins.

Purpose

This study aimed to clarify the effects of surface modification of titanium (Ti) implants by low-temperature atmospheric pressure plasma treatment on wound healing and cell attachment for biological sealing in peri-implant soft tissue.

Results

In in vivo experiments, increased width of the peri-implant connective tissue (PICT) and suppression of epithelial down growth was observed in PL compared with Cont. In addition, high gene expression of types I and XII collagen at 7 days and acceleration of collagen maturation was recognized in PL. Strong immunoreaction of integrin α2, α5, and β1 was observed at the implant contact area of PICT in PL. Conclusions: The handheld low-temperature atmospheric pressure plasma device provided hydrophilicity on the Ti surface and maintained the width of the contact area of PICT to the implant surface as a result of accelerated collagen maturation and fibroblast adhesion, compared to no plasma application.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。