A universal deep-learning model for zinc finger design enables transcription factor reprogramming

锌指设计的通用深度学习模型可实现转录因子重编程

阅读:6
作者:David M Ichikawa #, Osama Abdin #, Nader Alerasool, Manjunatha Kogenaru, April L Mueller, Han Wen, David O Giganti, Gregory W Goldberg, Samantha Adams, Jeffrey M Spencer, Rozita Razavi, Satra Nim, Hong Zheng, Courtney Gionco, Finnegan T Clark, Alexey Strokach, Timothy R Hughes, Timothee Lionnet, Mik

Abstract

Cys2His2 zinc finger (ZF) domains engineered to bind specific target sequences in the genome provide an effective strategy for programmable regulation of gene expression, with many potential therapeutic applications. However, the structurally intricate engagement of ZF domains with DNA has made their design challenging. Here we describe the screening of 49 billion protein-DNA interactions and the development of a deep-learning model, ZFDesign, that solves ZF design for any genomic target. ZFDesign is a modern machine learning method that models global and target-specific differences induced by a range of library environments and specifically takes into account compatibility of neighboring fingers using a novel hierarchical transformer architecture. We demonstrate the versatility of designed ZFs as nucleases as well as activators and repressors by seamless reprogramming of human transcription factors. These factors could be used to upregulate an allele of haploinsufficiency, downregulate a gain-of-function mutation or test the consequence of regulation of a single gene as opposed to the many genes that a transcription factor would normally influence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。