Establishing Minimal Conditions Sufficient for the Development of Titan-like Cells in Cryptococcus neoformans/ gattii Species Complex

建立足以在新型隐球菌/格特菌种复合体中发育出类泰坦细胞的最低条件

阅读:7
作者:Mariusz Dyląg, Rodney J Colón-Reyes, Yaliz Loperena-Álvarez, Lukasz Kozubowski

Abstract

Opportunistic pathogens of the anamorphic genus Cryptococcus are unique considering their virulence factors that in the context of pathogenesis allowed them to achieve evolutionary success. Morphological transformation into giant (Titan) cells is one of the factors contributing to cryptococcosis. Recently established in vitro protocols demonstrate that 5 or 10% fetal bovine serum (FBS) combined with 5% CO2, 37 °C, and sufficiently low cell density, triggers cellular enlargement (Serum protocols). However, the FBS components that promote this morphological transition remain incompletely characterized. In search of minimal conditions necessary for stimulating the formation of Titan cells, we performed a study where we eliminated serum from the protocol (Serum-free protocol) and instead systematically adjusted the amount of glucose, source of nitrogen (ammonium sulfate), and the pH. We found that exposing cells to PBS with adjusted pH to 7.3, and supplemented with 0.05% glucose, 0.025% ammonium sulfate, 0.004% K2HPO4, 0.0035% MgSO4, in the presence of 5% CO2 at 37 °C triggers Titan-like cell formation to the same degree as the previously established protocol that utilized 10% FBS as the sole nutrient source. Titan-like cells obtained according to this Serum-free protocol were characterized by cell body size over ten microns, a single enlarged vacuole, thick cell wall, extensive polysaccharide capsule, and changes in the level of cell ploidy, all currently known hallmarks of Titan cells found in vivo. Strikingly, we found that in both, Serum and Serum-free protocols, an optimal pH for Titan-like cell development is ~7.3 whereas relatively acidic pH (5.5) prevents this morphological transition and promotes robust proliferation, while alkaline pH (~8.0) has a profound growth inhibitory effect. Our study demonstrates a critical role of pH response to the formation of Titan cells and indicates that conditions that allow restricted proliferation in the presence of 5% CO2 are sufficient for this morphological transition to form enlarged cells in Cryptococcus neoformans and Cryptococcus gattii species complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。