Conclusions
Enoxaparin can prevent intestinal microcirculatory dysfunction in endotoxemic rats by preventing microvascular thrombosis formation and maintaining normal mean arterial pressure.
Methods
Thirty male Wistar rats were divided into the following three groups: sham operated (OP); lipopolysaccharide (LPS); and LPS + Enoxaparin group. The rats received a midline laparotomy to exteriorize a segment of terminal ileum for microcirculation examination by full-field laser perfusion imager and sidestream dark field video microscope on mucosa, muscle, and Peyer's patch. In the LPS and LPS + Enoxaparin groups, 15 mg/kg LPS was administered intravenously to induce endotoxemia, and 400 IU/kg enoxaparin sodium was also administered in the LPS + Enoxaparin group.
Results
At 240 minutes, the mean arterial pressure was higher in the LPS + Enoxaparin group than in the LPS group (93 ± 9 versus 64 ± 16 mm Hg, P < 0.001). Microcirculatory blood flow intensity was higher in the LPS + Enoxaparin group than in the LPS group as follows: mucosa (1085 ± 215 versus 617 ± 214 perfusion unit [PU], P < 0.001); muscle (760 ± 202 versus 416 ± 223 PU, P = 0.001); and Peyer's patch (1,116 ± 245 versus 570 ± 280 PU, P < 0.001). Enoxaparin inhibited LPS-induced reduction in perfused small vessel density and increase in heterogeneity of microcirculation. Conclusions: Enoxaparin can prevent intestinal microcirculatory dysfunction in endotoxemic rats by preventing microvascular thrombosis formation and maintaining normal mean arterial pressure.
