Downregulation of quinone reductase 2 attenuates vascular smooth muscle cells proliferation and neointimal formation in balloon injured rat carotid artery

醌还原酶 2 的下调减弱了球囊损伤大鼠颈动脉中的血管平滑肌细胞增殖和新生内膜形成

阅读:5
作者:Xi-wen Zhang, Yao Wang, Jing-bo Cai, Xiao-feng Hou, He-gui Wang, Jian-gang Zou, Ke-jiang Cao

Aims

Quinone reductase 2 (NQO2) is a flavoprotein that catalyzes the metabolic reduction of quinines, but its biological mechanism in vascular smooth muscle cells (VSMCs) is unclear. The aim of this study was to evaluate the role of NQO2 on VSMCs proliferation and the neointimal formation in balloon injured rat carotid artery.

Background/aims

Quinone reductase 2 (NQO2) is a flavoprotein that catalyzes the metabolic reduction of quinines, but its biological mechanism in vascular smooth muscle cells (VSMCs) is unclear. The aim of this study was to evaluate the role of NQO2 on VSMCs proliferation and the neointimal formation in balloon injured rat carotid artery.

Conclusion

Our study suggests that downregulation of NQO2 significantly suppresses VSMCs proliferation and progression of neointimal formation after vascular injury.

Methods

Left common carotid arteries from Sprague-Dawley rats were injured by a balloon catheter, and the injured arteries were incubated with 50 μL solution of NQO2-siRNA-GFP lentiviral vectors, NC-siRNA-GFP lentiviral vectors or PBS for 1 h. The rats were euthanized for morphometric and immunohistochemical analysis, real-time PCR and western blot analysis at 2 weeks after balloon injury and gene transfer. The cultured rat VSMCs transduced with NQO2-siRNA-GFP or NC-siRNA-GFP lentiviral vectors were used for cell proliferation assay, real-time PCR and western blot analysis. In order to detect the vascular or intracellular ROS level, the lentiviral vectors without GFP were used to transfect the injured common carotid arteries and the cultured rat VSMCs.

Results

Lentiviral vectors bearing NQO2 siRNA could reduce NQO2 protein level and suppress NQO2 mRNA expression in balloon injured artery walls and cultured rat VSMCs. Downregulation of NQO2 significantly suppressed VSMCs proliferation and intimal formation. NQO2 siRNA treatment could reduce vascular or intracellular ROS level and decrease the phosphorylation of the ERK1/2 in balloon injured artery walls and cultured rat VSMCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。