Hypoxic Exosomal circPLEKHM1-Mediated Crosstalk between Tumor Cells and Macrophages Drives Lung Cancer Metastasis

缺氧外泌体circPLEKHM1介导的肿瘤细胞与巨噬细胞之间的串扰驱动肺癌转移

阅读:4
作者:Dongliang Wang, Shuoer Wang, Mingming Jin, Yan Zuo, Jianpeng Wang, Ya Niu, Qian Zhou, Jiwei Chen, Xinru Tang, Wenxuan Tang, Xiyu Liu, Hang Yu, Wangjun Yan, Huan-Huan Wei, Gang Huang, Shaoli Song, Shuang Tang

Abstract

Intercellular communication often relies on exosomes as messengers and is critical for cancer metastasis in hypoxic tumor microenvironment. Some circular RNAs (circRNAs) are enriched in cancer cell-derived exosomes, but little is known about their ability to regulate intercellular communication and cancer metastasis. Here, by systematically analyzing exosomes secreted by non-small cell lung cancer (NSCLC) cells, a hypoxia-induced exosomal circPLEKHM1 is identified that drives NSCLC metastasis through polarizing macrophages toward to M2 type. Mechanistically, exosomal circPLEKHM1 promoted PABPC1-eIF4G interaction to facilitate the translation of the oncostatin M receptor (OSMR), thereby promoting macrophage polarization for cancer metastasis. Importantly, circPLEKHM1-targeted therapy significantly reduces NSCLC metastasis in vivo. circPLEKHM1 serves as a prognostic biomarker for metastasis and poor survival in NSCLC patients. This study unveils a new circRNA-mediated mechanism underlying how cancer cells crosstalk with macrophages within the hypoxic tumor microenvironment to promote metastasis, highlighting the importance of exosomal circPLEKHM1 as a prognostic biomarker and therapeutic target for lung cancer metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。