Aluminium-induced component engineering of mesoporous composite materials for low-temperature NH3-SCR

用于低温 NH3-SCR 的介孔复合材料的铝诱导组分工程

阅读:5
作者:Ge Li #, Baodong Wang #, Ziran Ma, Hongyan Wang, Jing Ma, Chunlin Zhao, Jiali Zhou, Dehai Lin, Faquan He, Zhihua Han, Qi Sun, Yun Wang

Abstract

Supported Mn2O3 is useful in achieving high dinitrogen selectivity at low temperature during ammonia-selective catalytic reduction (SCR). However, its controlled synthesis is challenging when the supporting material is the conventional pure silicon SBA-15 mesoporous molecular sieve. Here we show that silicon and aluminium in fly ash, the solid waste produced by coal-fired power plants, can be used to synthesize an Al-SBA-15 mesoporous molecular sieve support, which can guide the growth of Mn2O3 in the as-synthesized Fe-Mn/Al-SBA-15 NH3-SCR catalyst. Its superior catalytic performance is demonstrated by the high NOx conversion (≥90%) and selectivity (≥86%) at low temperatures (150-300 °C). The combined theoretical and experimental results reveal that the introduction of Al induces the growth of Mn2O3 catalysts. Our findings, therefore, provide a strategy for the rational design of low-temperature NH3-SCR catalysts through dopant-induced component engineering of composite materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。