Acid-sensing ion channel 1a regulates the specificity of reconsolidation of conditioned threat responses

酸敏感离子通道1a调节条件性威胁反应重巩固的特异性

阅读:1
作者:Erin E Koffman ,Charles M Kruse ,Kritika Singh ,Farzaneh Sadat Naghavi ,Melissa A Curtis ,Jennifer Egbo ,Mark Houdi ,Boren Lin ,Hui Lu ,Jacek Debiec ,Jianyang Du

Abstract

Recent research on altering threat memory has focused on a reconsolidation window. During reconsolidation, threat memories are retrieved and become labile. Reconsolidation of distinct threat memories is synapse dependent, whereas the underlying regulatory mechanism of the specificity of reconsolidation is poorly understood. We designed a unique behavioral paradigm in which a distinct threat memory can be retrieved through the associated conditioned stimulus. In addition, we proposed a regulatory mechanism by which the activation of acid-sensing ion channels (ASICs) strengthens the distinct memory trace associated with the memory reconsolidation to determine its specificity. The activation of ASICs by CO2 inhalation, when paired with memory retrieval, triggers the reactivation of the distinct memory trace, resulting in greater memory lability. ASICs potentiate the memory trace by altering the amygdala-dependent synaptic transmission and plasticity at selectively targeted synapses. Our results suggest that inhaling CO2 during the retrieval event increases the lability of a threat memory through a synapse-specific reconsolidation process. Keywords: Ion channels; Memory; Neuroscience; Psychiatric diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。