RNA N6-methyladenosine modification promotes auxin biosynthesis required for male meiosis in rice

RNA N6-甲基腺苷修饰促进水稻雄性减数分裂所需的生长素生物合成

阅读:8
作者:Peng Cheng, Shengjie Bao, Chengxiang Li, Jianhua Tong, Lisha Shen, Hao Yu

Abstract

N6-methyladenosine (m6A) RNA modification confers an essential layer of gene regulation in living organisms, including plants; yet, the underlying mechanisms of its deposition on specific target mRNAs involved in key plant developmental processes are so far unknown. Here, we show that a core component of the rice m6A methyltransferase complex, OsFIP37, is recruited by an RNA-binding protein, OsFIP37-associated protein 1 (OsFAP1), to mediate m6A RNA modification on an auxin biosynthesis gene, OsYUCCA3, during microsporogenesis. This stabilizes OsYUCCA3 mRNA and promotes local auxin biosynthesis in anthers during male meiosis, which is essential for meiotic division and subsequent pollen development in rice. Loss of function of OsFAP1 causes dissociation of OsFIP37 with OsYUCCA3 and the resulting abolished m6A deposition on OsYUCCA3. Our findings reveal that OsFAP1-dependent m6A deposition on OsYUCCA3 by OsFIP37 constitutes a hitherto unknown link between RNA modification and hormonal control of male meiosis in plant reproductive development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。