Microfluidic tool for rapid functional characterization of CRISPR complexes

用于快速表征 CRISPR 复合物功能的微流控工具

阅读:14
作者:Dana Peleg-Chen, Guy Shuvali, Lev Brio, Amit Ifrach, Ortal Iancu, Efrat Barbiro-Michaely, Ayal Hendel, Doron Gerber

Abstract

RNA guided nucleases are regarded as the future genome editing technologies. As such, they need to meet strong safety margins. Two major challenges in incorporating CRISPR technologies into the clinical world are off-target activity and editing efficiency. The common way to tackle such issues is to measure the binding and cleavage kinetics of the CRISPR enzyme. This can be challenging since, for example, DNA is not released from the CAS9 protein post cleavage. Here a promising new microfluidic approach to characterizing Enzymatic Interaction and Function of CRISPR complexes on a microfluidic platform (EnzyMIF) is presented. The method can rapidly detect the kd, koff, km and kcat for various RNA guided nucleases. In this work, two single guide RNAs with significantly different in-cell cleavage efficiency, RAG2 and RAG1, are used as proof-of-concept. The EnzyMIF assay results provide biochemical characterization of these guide RNAs that can explain the difference in cleavage using both wild type (WT) CAS9 and HiFi CAS9. Notably, it is shown that EnzyMIF characterization correlates with cell culture genomic editing efficiency results. It is suggested that EnzyMIF can predict the quality of cleavage rapidly and quantitatively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。