Acupuncture induces adenosine in fibroblasts through energy metabolism and promotes proliferation by activating MAPK signaling pathway via adenosine3 receptor

针刺通过能量代谢诱导成纤维细胞中腺苷,并通过腺苷3受体激活MAPK信号通路促进增殖

阅读:8
作者:Fei Qu, Yanru Cui, Jie Zeng, Mingyue Zhang, Shaying Qiu, Xiaoting Huang, Aishe Chen

Abstract

Acupuncture has many advantages in the treatment of certain diseases as opposed to drug therapy. Besides, adenosine has been revealed to affect cellular progression including proliferation. Therefore, this study aimed at exploring the mechanism involving acupuncture stress and adenosine in fibroblast proliferation. The fibroblasts from fascia tissues of the acupoint area (Zusanli) were stimulated by different levels of stress, different concentrations of adenosine, and agonist or antagonist of A3 receptor (A3 R) to investigate the effect of stress stimulation, adenosine, and adenosine-A3 R inhibition on fibroblasts. Then, the fibroblasts were treated with stress stimulation of 200 kPa or/and mitogen-activated protein kinase (MAPK) blocker. We revealed that stress stimulation and the binding of adenosine and A3 R promoted fibroblast proliferation in the fascial tissue, increased the expression of immune-related factors, adenosine and A3 R, and activated the MAPK signaling pathway. MAPK signaling pathway also directly affected the expression of adenosine, A3 R, and immune-related factors. Stress stimulation and adenosine treatment upregulated A3 R expression, and then activated the MAPK signaling pathway, which could in turn upregulate expression of adenosine, A3 R and immune-related factors, and promote cell proliferation. Adenosine is shown to form a positive feedback loop with the MAPK signaling pathway. Collectively, stress stimulation in vitro induces the increase of adenosine in fibroblasts through the energy metabolism and activation of the MAPK signaling pathway through A3 R, ultimately promoting fibroblast proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。