MicroRNA-21 promotes bone reconstruction in maxillary bone defects

MicroRNA-21促进上颌骨缺损骨重建

阅读:7
作者:Hong Wang, Hong Wang, Xiaoyu Li, Zijie Zhang, Xiaolu Zhao, Chunling Wang, Fulan Wei

Background

Bone reconstruction of the maxillary bone defects is an urgent issue due to its functional and aesthetic influence. MicroRNAs (miRNAs) are a class of non-coding RNAs that function in diverse biological and pathological processes. Recently, microRNA-21 (miR-21) was reported to play significant roles in bone formation, suggesting that miR-21 can be novel biomarker and therapeutic target for bone remodelling and skeletal diseases. However, the role of miR-21 in maxillary bone defects remains unclear.

Conclusion

These findings demonstrated that miR-21 deficiency impaired bone reformation and miR-21 contributed to the bone reconstruction of the maxillary bone defects. The evidence also supported the use of WT and miR-21-KO mice as maxillary bone defect models for further research.

Methods

This study aimed to investigate the effect of miR-21 on the bone reconstruction by inducing maxillary bone defects in wild-type (WT) and miR-21 knockout (miR-21-KO) mice and explore these mice as maxillary bone defect models.

Results

Micro-computed tomography (micro-CT) and histochemistry showed that the miR-21-KO mice had reduced bone reformation ability compared with the WT mice. The expression levels of alkaline phosphatase (ALP) and osteocalcin (OCN) were dramatically decreased in the miR-21-KO mice. In addition, injection of miR-21 agomir intra-peritoneally into miR-21-KO mice (miR-21-KO+ agomir) following the maxillary bone defects surgery displayed a significantly enhanced bone formation -promoting ability, which indicated that miR-21 agomir could ameliorate maxillary bone defects in miR-21-KO mice in vivo. Furthermore, immunohistochemistry suggested that ALP and OCN expressions were prominently increased in miR-21-KO+ agomir mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。