MiR-96-5p Induced by Palmitic Acid Suppresses the Myogenic Differentiation of C2C12 Myoblasts by Targeting FHL1

棕榈酸诱导的 miR-96-5p 通过靶向 FHL1 抑制 C2C12 成肌细胞的成肌分化

阅读:7
作者:Mai Thi Nguyen, Kyung-Ho Min, Wan Lee

Abstract

Skeletal myogenesis is a multi-stage process that includes the cell cycle exit, myogenic transcriptional activation, and morphological changes to form multinucleated myofibers. Recent studies have shown that saturated fatty acids (SFA) and miRNAs play crucial roles in myogenesis and muscle homeostasis. Nevertheless, the target molecules and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study investigated the critical role played by miR-96-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) significantly reduced FHL1 expression and inhibited the myogenic differentiation of C2C12 myoblasts but induced miR-96-5p expression. The knockdown of FHL1 by siRNA stimulated cell proliferation and inhibited myogenic differentiation of myoblasts. Interestingly, miR-96-5p suppressed FHL1 expression by directly targeting the 3'UTR of FHL1 mRNA. The transfection of an miR-96-5p mimic upregulated the expressions of cell cycle-related genes, such as PCNA, CCNB1, and CCND1, and increased myoblast proliferation. Moreover, the miR-96-5p mimic inhibited the expressions of myogenic factors, such as myoblast determination protein (MyoD), myogenin (MyoG), myocyte enhancer factor 2C (MEF2C), and myosin heavy chain (MyHC), and dramatically impeded differentiation and fusion of myoblasts. Overall, this study highlights the role of miR-96-5p in myogenesis via FHL1 suppression and suggests a novel regulatory mechanism for myogenesis mediated by miRNA in a background of obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。