Profiling and Targeting of Energy and Redox Metabolism in Grade 2 Bladder Cancer Cells with Different Invasiveness Properties

对具有不同侵袭性的2级膀胱癌细胞的能量和氧化还原代谢进行分析和靶向治疗

阅读:2
作者:Valentina Pasquale ,Giacomo Ducci ,Gloria Campioni ,Adria Ventrici ,Chiara Assalini ,Stefano Busti ,Marco Vanoni ,Riccardo Vago ,Elena Sacco

Abstract

Bladder cancer is one of the most prevalent deadly diseases worldwide. Grade 2 tumors represent a good window of therapeutic intervention, whose optimization requires high resolution biomarker identification. Here we characterize energy metabolism and cellular properties associated with spreading and tumor progression of RT112 and 5637, two Grade 2 cancer cell lines derived from human bladder, representative of luminal-like and basal-like tumors, respectively. The two cell lines have similar proliferation rates, but only 5637 cells show efficient lateral migration. In contrast, RT112 cells are more prone to form spheroids. RT112 cells produce more ATP by glycolysis and OXPHOS, present overall higher metabolic plasticity and are less sensitive than 5637 to nutritional perturbation of cell proliferation and migration induced by treatment with 2-deoxyglucose and metformin. On the contrary, spheroid formation is less sensitive to metabolic perturbations in 5637 than RT112 cells. The ability of metformin to reduce, although with different efficiency, cell proliferation, sphere formation and migration in both cell lines, suggests that OXPHOS targeting could be an effective strategy to reduce the invasiveness of Grade 2 bladder cancer cells. Keywords: 2D and 3D cultures; Operetta CLS™; Seahorse Extracellular Flux Analyzer; bladder cancer; cellular bioenergetics; energy and redox metabolism; fatty acids oxidation; glycolysis; mitochondrial function; oxidative stress; quantitative imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。