Msx1 deficiency interacts with hypoxia and induces a morphogenetic regulation during mouse lip development

Msx1 缺乏与缺氧相互作用并在小鼠唇部发育过程中诱导形态发生调控

阅读:4
作者:Mitsushiro Nakatomi, Kerstin U Ludwig, Michael Knapp, Ralf Kist, Steven Lisgo, Hayato Ohshima, Elisabeth Mangold, Heiko Peters

Abstract

Nonsyndromic clefts of the lip and palate are common birth defects resulting from gene-gene and gene-environment interactions. Mutations in human MSX1 have been linked to orofacial clefting and we show here that Msx1 deficiency causes a growth defect of the medial nasal process (Mnp) in mouse embryos. Although this defect alone does not disrupt lip formation, Msx1-deficient embryos develop a cleft lip when the mother is transiently exposed to reduced oxygen levels or to phenytoin, a drug known to cause embryonic hypoxia. In the absence of interacting environmental factors, the Mnp growth defect caused by Msx1 deficiency is modified by a Pax9-dependent 'morphogenetic regulation', which modulates Mnp shape, rescues lip formation and involves a localized abrogation of Bmp4-mediated repression of Pax9 Analyses of GWAS data revealed a genome-wide significant association of a Gene Ontology morphogenesis term (including assigned roles for MSX1, MSX2, PAX9, BMP4 and GREM1) specifically for nonsyndromic cleft lip with cleft palate. Our data indicate that MSX1 mutations could increase the risk for cleft lip formation by interacting with an impaired morphogenetic regulation that adjusts Mnp shape, or through interactions that inhibit Mnp growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。