Lysophosphatidic acid regulates the motility of MCF10CA1a breast cancer cell sheets via two opposing signaling pathways

溶血磷脂酸通过两种相反的信号通路调节 MCF10CA1a 乳腺癌细胞片的运动能力

阅读:5
作者:Christina H Stuelten, Rachel M Lee, Wolfgang Losert, Carole A Parent

Abstract

Aberrant cell migration leads to the dispersal of malignant cells. The ubiquitous lipid mediator lysophosphatidic acid (LPA) modulates cell migration and is implicated in tumor progression. Yet, the signaling cascades that regulate LPA's effect on cell motility remain unclear. Using time-lapse imaging and quantitative analyses, we studied the role of signaling cascades that act downstream of LPA on the motility of MCF10CA1a breast cancer cells. We found that LPA alters cell motility via two major signaling pathways. The Rho/ROCK signaling cascade is the predominant pathway that increases E-Cadherin containing cell-cell adhesions and cortical arrangement of actomyosin to promote slow, directional, spatially coherent and temporally consistent movement. In contrast, Gαi/o- and Gαq/11-dependent signaling cascades lessen directionality and support the independent movement of cells. The net effect of LPA on breast cancer cell migration therefore results from the integrated signaling activity of the Rho/ROCK and Gαi/o- and Gαq/11-dependent pathways, thus allowing for a dynamic migratory response to changes in the cellular or microenvironmental context.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。