Atrial proteomic profiling reveals a switch towards profibrotic gene expression program in CREM-IbΔC-X mice with persistent atrial fibrillation

心房蛋白质组学分析显示,持续性心房颤动的 CREM-IbΔC-X 小鼠的心房向促纤维化基因表达程序转变

阅读:9
作者:Shuai Zhao, Mohit M Hulsurkar, Satadru K Lahiri, Yuriana Aguilar-Sanchez, Elda Munivez, Frank Ulrich Müller, Antrix Jain, Anna Malovannaya, Chi Him Kendrick Yiu, Svetlana Reilly, Xander H T Wehrens

Background

Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF.

Conclusions

This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.

Methods

Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis.

Purpose

To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis.

Results

A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and structural based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns reminiscent of those seen in humans with persistent AF. Conclusions: This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。