Baiap3 regulates depressive behaviors in mice via attenuating dense core vesicle trafficking in subsets of prefrontal cortex neurons

Baiap3 通过减弱前额叶皮质神经元亚群中的致密核心囊泡运输来调节小鼠的抑郁行为

阅读:4
作者:Hyunwoo Kim, Jeongha Kim, Haksoo Lee, Eunguk Shin, Hyunkoo Kang, Jaewan Jeon, BuHyun Youn

Abstract

Selective serotonin reuptake inhibitors (SSRIs) are effective first line therapies for treating depression, but are plagued by undesirable side effects and are not effective in all patients. Because SSRIs effectively deplete the neuronal releasable serotonin (5-HT) pool, gaining a deeper understanding of intracellular mechanisms regulating 5-HT pools can help us understand the shortcomings of SSRIs and develop more effective therapies. In this study, we found that BAIAP3 (brain-specific angiogenesis inhibitor 1-associated protein 3) is significantly downregulated in two mouse models of depression (the IR- and CUMS-induced depressive mouse models). In BAIAP3 downregulated models (in vitro and in vivo), we discovered that trafficking of dense core vesicle (DCV), organelles that store, transport and release cargo via exocytosis, was reduced. Accordingly, 5-HT exocytosis and levels in the synapse were lowered, causing defective post-synaptic neurotransmission. In a screen of natural products, we identified eucalyptol, the active components of Eucalyptus, as uniquely capable of increasing neuronal Baiap3 expression and elevate synaptic 5-HT levels. Moreover, eucalyptol treatment relieved depressive behavioral symptoms and restored serotonin levels in mice. Mechanistically, eucalyptol restores Baiap3 expression by reducing inhibitory microRNAs (miR-329, miR-362). These findings illuminate how Baiap3 depletion propagates neurotransmission dysfunction and point to eucalyptol as a novel agent for restoring serotonin exocytosis, suggesting potential for developing eucalyptol as a therapy for treating depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。