4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer

4-辛基衣康酸酯通过靶向 GAPDH 抑制有氧糖酵解,促进结直肠癌杯状凋亡

阅读:5
作者:Wenchang Yang, Yaxin Wang, Yongzhou Huang, Jiaxian Yu, Tao Wang, Chengguo Li, Lei Yang, Peng Zhang, Liang Shi, Yuping Yin, Kaixiong Tao, Ruidong Li

Abstract

Cuproptosis, a novel copper-induced cell death pathway, is linked to mitochondrial respiration and mediated by protein lipoylation. The discovery of cuproptosis unfolds new areas of investigation, particularly in cancers. The present study aimed to explore the role of cuproptosis in colorectal cancer progression. The genetic alterations of cuproptosis in colon cancer were evaluated using a database. MTT assays, colony formation, and flow cytometry were used to examine the effect of elesclomol-Cu and 4-Octyl itaconate (4-OI) on colorectal cancer cell and oxaliplatin-resistant cell viability. The anti-tumor effect of elesclomol with 4-OI was verified in vivo assay. The results showed that FDX1, SDHB, DLAT, and DLST genes were more highly expressed in normal tissues than those in primary tumor tissues. Patients with high expressions of these genes in tumor tissues had a better prognosis. Using MTT assay and colony formation analysis, elesclomol-Cu pulse treatment showed significant inhibition of cell viability in HCT116, LoVo, and HCT116-R cells. In addition, flow cytometry revealed elesclomol-Cu significantly promoted apoptosis. Tetrathiomolybdate, a copper chelator, markedly inhibited cuproptosis. Subsequently, we found 2-deoxy-D-glucose, a glucose metabolism inhibitor, sensitized cuproptosis. Furthermore, galactose further promoted cuproptosis. Interestingly, 4-OI significantly enhanced cuproptosis which was irrelevant to ROS production, apoptosis, necroptosis, or pyroptosis pathways. Aerobic glycolysis was inhibited by 4-OI through GAPDH, one of the key enzymes of glycolysis, sensitizing cuproptosis. Meanwhile, FDX1 knockdown weakened the ability of 4-OI to promote cuproptosis. In vivo experiments, 4-OI with elesclomol-Cu showed better anti-tumor effects. These results indicated that elesclomol-Cu rapidly halted cell growth in colorectal cancer cells and oxaliplatin-resistant cell line. Importantly, we revealed that 4-OI inhibited aerobic glycolysis by targeting GAPDH to promote cuproptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。