Bile acids promote the development of HCC by activating inflammasome

胆汁酸通过激活炎症小体促进肝细胞癌的发展

阅读:9
作者:Wenbo Chen, Ming Ding, Liyan Ji, Jingjing Yao, Yajuan Guo, Wenxin Yan, Shaofang Yu, Qinghong Shen, Min Huang, Yaqiu Zheng, Yuefang Lin, Ying Wang, Zhongqiu Liu, Linlin Lu, Xin Jin

Background

Hepatocellular carcinoma (HCC) is associated with chronic inflammation caused by different factors; especially, the interaction of inflammatory pathways and bile acids (BAs) can affect hepatocyte proliferation, death, and regeneration, but whether BAs promote HCC progression through inflammatory pathways and the mechanisms is still unclear.

Conclusions

In conclusion, we found that CDCA can trigger the excessive accumulation of mitochondrial reactive oxygen species by targeting HO-1 to promote the activation of the inflammasome and ultimately promote the progression of HCC. Our study provides a novel mechanism by which BAs promote HCC by activating the inflammasome and establishes the important role of BA homeostasis imbalance in the progression of HCC from the aspect of inflammation.

Results

By examining cancer and tumor-adjacent tissue BA levels and genes associated with BA homeostasis in 37 HCC patients, we found that total bile acids (TBAs) were decreased by 36% and varying degrees of changes in factors regulating BA homeostasis (p < 0.05). In addition, we found that BA homeostasis was disturbed in diethylnitrosamine-induced HCC mouse models, and TBA was correlated with inflammasome activation during HCC progression (6-24 W) (p < 0.05). Similarly, the inflammasome and chenodeoxycholic acid (CDCA) content were suppressed in cholestasis model mice (Mrp2-deficient mice) (p < 0.05). In vitro, CDCA significantly promoted the malignant transformation of hepatocytes (p < 0.001), activated the inflammasome by triggering the release of mitochondrial reactive oxygen species and mitochondrial DNA, and ultimately induced pyroptosis. Furthermore, we found that CDCA has a targeted binding effect with HO-1 through molecular docking and Cellular Thermal Shift Assay experiments. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。