Sirtuin4 suppresses the anti-neuroinflammatory activity of infiltrating regulatory T cells in the traumatically injured spinal cord

Sirtuin4 抑制创伤性脊髓中浸润调节性 T 细胞的抗神经炎症活性

阅读:5
作者:Wenping Lin, Wenkai Chen, Weifeng Liu, Zhengquan Xu, Liqun Zhang

Abstract

The neuroinflammation following traumatic spinal cord injury (SCI) is a critical process that impacts both the injury and the recovery of spinal cord parenchyma. Infiltrating regulatory T (Treg) cells are potent anti-inflammatory cells that restrain post-SCI neuroinflammation. To understand the molecular mechanisms underlying the activity of infiltrating Treg cells, we used a mouse spinal cord compression injury model to analyze the role of Sirtuins (SIRTs) in the modulation of infiltrating Treg cell functions. We found that the expressions of SIRT4 and SIRT6 were up-regulated in infiltrating Treg cells. Using lentivirus-mediated gene expression or RNA interference, we revealed that SIRT4 substantially inhibited the expression of Foxp3, interleukin-10, and transforming growth factor-β in Treg cells, whereas SIRT6 had little effect on Treg cells. Consistently, SIRT4 overexpression weakened the suppressive effect of Treg cells on lipopolysaccharide-stimulated spinal cord CD11b+ myeloid cells. Knock-down of SIRT4 enhanced the anti-inflammatory activity of infiltrating Treg cells in the parenchyma of injured spinal cords. Additionally, SIRT4 overexpression blocked in vitro Treg cell generation from conventional T cells. Furthermore, SIRT4 down-regulated 5' AMP-activated protein kinase (AMPK) signaling in Treg cells, whereas the AMPK agonist AICAR restored the expression of Foxp3 and interleukin-10 in SIRT4-overexpressing Treg cells. In conclusion, our research unveils a new mechanism by which the post-SCI neuroinflammation is regulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。