Autophagic lysosomal reformation depends on mTOR reactivation in H2O2-induced autophagy

自噬溶酶体重塑依赖于 H2O2 诱导的自噬中的 mTOR 再激活

阅读:5
作者:Jiqian Zhang, Wei Zhou, Jun Lin, Pengfei Wei, Yunjiao Zhang, Peipei Jin, Ming Chen, Na Man, Longping Wen

Abstract

Autophagic lysosomal reformation, a key cellular process for maintaining lysosome homeostasis in elevated autophagy, so far has only been reported for cells under certain forms of starvation. For this reason, it is controversial that whether this phenomenon is starvation-specific and its importance in lysosomal regeneration at the late stage of autophagy is often challenged. Here we show that exogenous hydrogen peroxide (H2O2) induced lysosome depletion and recovery characteristic of autophagic lysosomal reformation, and we confirmed the occurrence of autophagic lysosomal reformation after H2O2 treatment by demonstrating Rab7 dissociation from autolysosomes, recruitment of Phosphatidylinositol 4-phosphate (PI4P) and clathrin to the surface of autolysosomes, and the existence of tubular "pro-lysosome" structures extending from autolysosomes. Similar to starvation, H2O2 caused an initial deactivation and a subsequent reactivation for mTOR, and mTOR reactivation was essential for ALR. Our results provided a first non-starvation example of autophagic lysosomal reformation and provide evidence for its importance for some autophagic processes other than that of starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。