HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1-ELF3-PIF4 pathway in Arabidopsis

在拟南芥中,HSP90 通过 COP1-ELF3-PIF4 通路参与暗形态发生和热形态发生过程中下胚轴伸长

阅读:5
作者:Yue Zeng, Jiayu Wang, Sha Huang, Yu Xie, Tongdan Zhu, Leyi Liu, Lin Li

Abstract

Light and temperature are two key environmental signals that share several molecular components that, in turn, regulate plant growth. Darkness and high ambient temperatures promote skoto- and thermomorphogenesis, including stem elongation. Heat shock proteins 90 (HSP90s) facilitate the adaptation of organisms to various adverse environmental stimuli. Here, we showed that HSP90s are required for hypocotyl elongation during both skoto- and thermomorphogenesis. When HSP90s activities are impaired by the knockdown of HSP90s expression or the application of HSP90 inhibitors, the expression levels and protein abundance of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) markedly decreased. EARLY FLOWERING 3 (ELF3) deficiency was resistant to the inhibition of HSP90s activities. Furthermore, HSP90s interacted with and destabilized ELF3. In the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) mutant, the changes in endogenous PIF4 and ELF3 protein levels caused by the inhibition of HSP90s activities were abolished. HSP90s enhanced the interaction between COP1 and ELF3, reduced ELF3 functional effects on PIF4 and modulated hypocotyl elongation during skoto- and thermomorphogenesis. Our results indicated that HSP90s participate in light and temperature signalling via the COP1-ELF3-PIF4 module to regulate hypocotyl growth in changing environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。